

<section-header><section-header><text><image>

generally referred to in agricultural literature
are areas of carefully managed vegetation adjacent to crops

Median Pollutant Removal (%)

Treatment BMP	Total Suspended Solids	Total Phosphurus	Soluble Phosphurus	Total Nitrogen	Nitrate	Copper	Zinc
Stormwater Detention Ponds	47	19	6	25	4	26	26
Stormwater Retention Pond	80	51	66	33	43	57	66
Stormwater Wetlands	76	49	35	30	67	40	44
Water Quality Swales	81	34	8	8	31	51	71
"Vegetated" Buffer (30 feet)	58-95	19-80		7-77	19-80		

Source for Treatment BMP's: Brown and Schueler 1997 Source for Vegetated Buffer Treatment level: Dillaha et al. 1988

What influences the effectiveness of a given buffer?

- Slope
- -Vegetation type
- -Activity
- -Soil Type

Aquatic Wildlife Buffers: protect nesting locations by reducing sedimentation maintain dissolved oxygen reduce pollution Can maintain fish diversity and influence community structure

Yellow Perch

Travel Corridors

Example of road mortality on Rt 125 (female Blanding's turtle)

= Contiguous areas of natural vegetation

-May functions as wildlife dispersal routes

-Subdivisions designed for safety can fragment corridors

Example Buffer Widths in NH

- -Over 84 towns have wetland buffer requirements ranging from $\sim 25 300$ ft
- -DES mitigation requirements include a 100-foot wetland buffer
- DES Shoreland Protection Standards include requirements for a natural woodland buffer within 150 ft of the reference line of a waterbody
- EPA frequently requests vernal pool buffers as part of projects reviewed by the U.S. Army Corps of Engineers

Variability in Buffer Recommendations/Requirements

- 50 ft recommendation for vernal pools (NH draft guidance form)
- 750 feet (Calhoun and Klemens 2002) !!!
- 100 ft (Rye)
- 200 ft (Litchfield)

What does a "small" buffer do?

"Small" Buffer (~ 25 – 50 feet)

- Help to protect water quality
- Provide small scale travel routes
- May provide nesting/basking sites

What does a large buffer do?

Provides habitat components to more species

- Helps to reduce secondary impacts
 - Increased water quality protection
 - Provides large scale corridors
 - I TA M. ANTA ANALAS

Buffers – Quality can be more important than quantity

Spotted Salamander Adult

-Found in uplands most of the year

-requires natural cover on the forest floor and small mammal burrows

-Migrates an average of 400 - 600 feet to and from pools

-1-40m² home range

Minimization Options for Wildlife When Corridors Aren't Feasible

- Cap Cod-style curbing
- Avoid directing lighting into buffers
- Design snow storage areas carefully
- Education
- Construct amphibian culverts

What are some shortcomings of buffer regulations and research?

- -Need data on impacts associated with subdivisions
- -Knowing dispersal distance is only one part of the puzzle
- -Buffer regulations need to identify reasonable activities (setbacks may do little)
- -ZBA's may be granting many variances
- -Stream-lined buffer regulations often cannot take site conditions into account
- -Engineering considerations often demand variable-sized buffers

Shortcomings continued

Attorneys can find loop holes in language (commas matter!)

Buffer description:

Within 100 feet of the edges of all tidal marshes, bays, estuaries, rivers, river tributaries and creeks, as defined by the highest flooding of the ocean tides: the edges of Eel Pond, Burke's Pond, Brown's Pond and East Rye Pond as defined by the high-water mark: the edges of all natural perennial streams, vernal pools and ponds (1) acre or larger in size as defined by the high-water mark; and freshwater marshes, as defined by vegetation.

THE BIG QUESTION

• Should a created depression or disturbed wetland receive the same buffer as a natural system?

Questions?

